Exponencial Moving Average Labview
Filter Express VI Especifica os seguintes tipos de filtros para usar: lowpass, highpass, bandpass, striptop ou suavização. O padrão é Lowpass. Contém as seguintes opções: Freqüência de corte (Hz) 8212 Especifica a freqüência de corte do filtro. Esta opção está disponível somente quando você seleciona Lowpass ou Highpass no menu suspenso Tipo de filtragem. O padrão é 100. Baixa freqüência de corte (Hz) 8212 Especifica a baixa freqüência de corte do filtro. A baixa freqüência de corte (Hz) deve ser inferior à alta freqüência de corte (Hz) e observar o critério de Nyquist. O padrão é 100. Esta opção está disponível somente quando você seleciona Bandpass ou Bandstop no menu suspenso Tipo de filtragem. Alta freqüência de corte (Hz) 8212 Especifica a alta freqüência de corte do filtro. A alta freqüência de corte (Hz) deve ser maior que a baixa freqüência de corte (Hz) e observar o critério de Nyquist. O padrão é 400. Esta opção está disponível somente quando você seleciona Bandpass ou Bandstop no menu suspenso Tipo de filtragem. Filtro de resposta de impulso finito (FIR) 8212Creado um filtro FIR. Que depende apenas das entradas atuais e passadas. Como o filtro não depende das saídas passadas, a resposta ao impulso decai para zero em uma quantidade limitada de tempo. Como os filtros FIR retornam uma resposta de fase linear, use filtros FIR para aplicativos que requerem respostas de fase linear. Torneiras 8212 Especifica o número total de coeficientes de FIR, que deve ser maior que zero. O padrão é 29. Esta opção está disponível somente quando você seleciona a opção de filtro de resposta de impulso finito (FIR). Aumentar o valor de Taps faz com que a transição entre o passband e o stopband se torne mais íngreme. No entanto, à medida que o valor de Taps aumenta, a velocidade de processamento torna-se mais lenta. Filtro infinito de resposta ao impulso (IIR) 8212Creado um filtro IIR que é um filtro digital com respostas de impulso que, teoricamente, podem ter duração ou duração infinitas. Topologia 8212Determina o tipo de projeto do filtro. Você pode criar um projeto de filtro Butterworth, Chebyshev, Inverse Chebyshev, Elliptic ou Bessel. Esta opção está disponível somente quando você seleciona a opção de filtro de resposta de impulso infinito (IIR). O padrão é Butterworth. Ordem 8212Order do filtro IIR, que deve ser maior que zero. Esta opção está disponível somente quando você seleciona a opção de filtro de resposta de impulso infinito (IIR). O padrão é 3. Aumentar o valor da Ordem faz com que a transição entre a banda passante e a faixa de parada se torne mais íngreme. No entanto, à medida que o valor da Ordem aumenta, a velocidade de processamento torna-se mais lenta e o número de pontos distorcidos no início do sinal aumenta. Métodos de migração direta de média 8212 para a frente (FIR). Esta opção está disponível somente quando você seleciona Suavização no menu suspenso Tipo de filtragem. Rectangular 8212 Especifica que todas as amostras na janela da média móvel são ponderadas igualmente no cálculo de cada amostra de saída suavizada. Esta opção está disponível somente quando você seleciona Suavização no menu suspenso Tipo de filtragem e na opção Mover média. Triangular 8212 Especifica que a janela de ponderação em movimento aplicada às amostras é triangular com o pico centrado no meio da janela, descendo de forma simétrica em ambos os lados da amostra central. Esta opção está disponível somente quando você seleciona Suavização no menu suspenso Tipo de filtragem e na opção Mover média. Meia largura da média móvel 8212 Especifica a metade da largura da janela da média móvel em amostras. O padrão é 1. Para uma meia largura da média móvel de M, a largura total da janela de média móvel é N 1 amostras de 2M. Portanto, a largura total N é sempre um número ímpar de amostras. Esta opção está disponível somente quando você seleciona Suavização no menu suspenso Tipo de filtragem e na opção Mover média. Exponencial 8212Istrói os coeficientes IIR de primeiro orden. Esta opção está disponível somente quando você seleciona Suavização no menu suspenso Tipo de filtragem. Constante de tempo da média exponencial 8212 Especifica a constante de tempo do filtro de ponderação exponencial em segundos. O padrão é 0.001. Esta opção está disponível somente quando você seleciona Suavização no menu suspenso Tipo de filtragem e na opção Exponencial. Exibe o sinal de entrada. Se você transmitir dados para o Express VI e executá-lo, o sinal de entrada exibe dados reais. Se você fechar e reabrir o Express VI, o Sinal de Entrada exibe dados de amostra até que você execute o Express VI novamente. Exibe uma pré-visualização da medição. O gráfico de Exibição de resultados indica o valor da medida selecionada com uma linha pontilhada. Se você transmitir dados para o Express VI e executar o VI, a Visualização de resultados exibe dados reais. Se você fechar e reabrir o Express VI, a Visualização do resultado exibe os dados da amostra até que você execute novamente o VI. Se os valores da frequência de corte forem inválidos, a Visualização do resultado não exibirá dados válidos. Contém as seguintes opções: Nota: Alterar as opções na seção Modo de Visualização não afeta o comportamento do VI Filtro Express. Use as opções do modo de exibição para visualizar o que o filtro faz para o sinal. O LabVIEW não guarda essas opções quando você fecha a caixa de diálogo de configuração. Sinais 8212 Exibe a resposta do filtro como sinais reais. Mostrar como espectro 8212 Especifica se deseja exibir os sinais reais da resposta do filtro como um espectro de freqüência ou deixar a exibição como uma exibição baseada no tempo. A exibição de freqüência é útil para ver como o filtro afeta os vários componentes de freqüência do sinal. O padrão é exibir a resposta do filtro como uma exibição baseada no tempo. Esta opção está disponível somente quando você seleciona a opção Sinais. Função de transferência 8212 Exibe a resposta do filtro como uma função de transferência. Contém as seguintes opções: Magnitude em dB 8212Presenta a resposta de magnitude do filtro em decibéis. Frequência no log 8212Presenta a resposta de freqüência do filtro em uma escala logarítmica. Exibe a resposta de magnitude do filtro. Esta exibição está disponível somente quando você configura o modo Exibir para a função Transferir. Exibe a resposta de fase do filtro. Esta exibição está disponível somente quando você configura o modo de exibição para a função de transferência. Não tenho certeza se eu já mencionou isso, mas estou comparando a média média móvel modificada (EWMA) com a média média móvel (MA) para filtrar o ruído de um sinal que é A 0Hz. O ruído é ruído branco, talvez às vezes um sinal perturbador do meio ambiente em qualquer freqüência, pois estou medindo um sinal acústico. O SNR é em torno de -50dB após pré-amplificação e AA. Eu estou usando estes, como eu estou construindo um Digital Lock In Amplifier e esses dois filtros têm apenas um valor para mudar (por exemplo, alfa) para mudar TC e em cascata múltiplas MAs ou EWMAs, eu posso mudar a inclinação de 20dBdecade para múltiplos inteiros daquele . É por isso que eu não uso o filtro FIR FIRX xxx ou o filtro IIR que pode ficar instável. A minha frequência de amostragem é de 48kHz e estou submetendo-me a amostragem com dois filtros CIC de 2 fases para 93,75Hz (fator 512). Para a média móvel, o problema é armazenar esses valores. À medida que fs aumenta, o número de amostras, que tem que ser calculado para obter o mesmo TC com um fs menor, também está aumentando. E com o BlockRam estou perto do limite. Para obter TC de 10s e superior com roll offs de 80dBdecade ou mais, eu ainda tenho que diminuir ainda mais. Para o EWMA é diferente, o único problema aqui é os alfas realmente pequenos. Se o alfa estiver ficando menor do que 0,001 eu diminui fs. 1, talvez seja uma pergunta estúpida, mas a média com 16 x fs está causando 4 bits a mais, como 24 é 16, à direita 2, qualquer comentário sobre o fator de decimação ou o meu bloqueio na configuração (os 512 são copiados de outro bloqueio em Feito em dsp) 1. Sim. Por cada 2X, adicione um LSB (se você ainda não). 2. Não entendo o aplicativo o suficiente para dizer. Eu não estou familiarizado com os filtros da CIC, e precisarei experimentar um pouco para discutir bem seus detalhes. Pelo que vi, parece que eles apresentariam algum alias, especialmente com áudio e ruído. Provavelmente são fantásticos para o vídeo. O EWMA é realmente um filtro IIR (feed forward alpha, 0, feed backward 1-alpha). Eu não me lembro do procedimento, mas você pode converter um EWMA de dois estágios em um IIR um pouco maior. Seria preciso um pequeno erro de ampliação de teste, mas você pode ter melhores resultados apenas de um EWMA, então fila uma amostra de 512, em vez do CIC, então EWMA. Um sinal que é verdadeiramente a 0Hz é DC, e a maioria dos sinais acústicos não inclui 0Hz (os transdutores geralmente o filtram). Im assumindo que você significa menos de 1 Hz, o que é difícil, mas gerenciável. Os filtros podem estar complicando demais o problema. Se tudo o que você precisar é bloquear um sinal de sub-Hz, pode haver métodos mais fáceis. Por exemplo, multiplique a entrada por cos (wt) e por sin (wt) (ou use números complexos e multiplique por r1, thetawt), e integre os resultados ao longo de vários segundos ou passe pelo EWMA com um alfa muito menor. Utilizador CLD desde a rev. 8.6. O sinal acústico está a 4kHz, mas ao desmodelá-lo com um seno e um coseno com a mesma freqüência, desloco o sinal para 0 Hz e 8kHz (ambos com metade da amplitude em relação a antes) agora eu filtro tudo acima de 0Hz. Esta desmodulação é importante para se livrar do ruído por filtragem de passagem baixa. Eu uso vários estágios de EWMA e MA para ter uma rotação variável. O recurso de estágio múltiplo não é mostrado no VI discutido aqui, mas o feedback é atrasado mais uma vez cada estágio adicional e a entrada passa pelo filtro mais de uma vez. O fator de decimação do cic também é variável, mas como as taxas são poderes de dois, o ganho de 0Hz do CIC pode ser definido como 1 por bit, deslocando a saída. Por isso, eu sempre recebo 24 bits na entrada do EWMA e acho que 40bits devem ser suficientes no EWMA. A vantagem de EWMA e MA é que você pode facilmente adaptar alfa ou o comprimento do filtro M para obter o tempo desejado constante. O uso de múltiplos estágios torna possível o deslocamento variável (20, 40, 60. dbdecade). A vantagem do CIC é o ganho de unidade em DC (mas os poderes de 2 e bitshifting devem ser aplicados) e fatores de mudança de taxa variável. Não ter nenhum multiplicador é definitivamente bom, também, em relação aos problemas de recursos. O aliasing introduzido pode ser controlado ou pelo menos quantificado pelo número de estágios usados. Só posso recomendar o livro que mencionei na minha primeira publicação. Aqui implementando CIC, EWMA ou MA são explicados muito detalhadamente. Último ponto a mencionar, o bloqueio funciona com esta configuração pelo menos em um SNR de -60dB. Atenção e agradecimento pelo seu precioso tempo. Modelos de suavização média e exponencial. Como um primeiro passo para se deslocar além dos modelos médios, modelos de caminhada aleatórios e modelos de tendência linear, padrões e tendências não sazonais podem ser extrapolados usando um modelo de média móvel ou suavização. O pressuposto básico por trás da média e dos modelos de suavização é que as séries temporais são localmente estacionárias com uma média que varia lentamente. Por isso, tomamos uma média móvel (local) para estimar o valor atual da média e, em seguida, use isso como a previsão para um futuro próximo. Isso pode ser considerado como um compromisso entre o modelo médio e o modelo random-walk-without-drift. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel geralmente é chamada de uma versão quotsmoothedquot da série original porque a média a curto prazo tem o efeito de suavizar os solavancos na série original. Ao ajustar o grau de alisamento (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ideal entre o desempenho dos modelos de caminhada aleatória e média. O tipo mais simples de modelo de média é o. Média Móvel simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para repousar Para uma previsão das séries temporais Y feitas o mais cedo possível por um determinado modelo.) Esta média é centrada no período t (m1) 2, o que implica que a estimativa da média local tende a ficar para trás do verdadeiro Valor da média local em cerca de (m1) 2 períodos. Assim, dizemos que a idade média dos dados na média móvel simples é (m1) 2 em relação ao período para o qual a previsão é calculada: esta é a quantidade de tempo pelo qual as previsões tenderão a atrasar os pontos de viragem nos dados . Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados na resposta a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m for muito grande (comparável ao comprimento do período de estimativa), o modelo SMA é equivalente ao modelo médio. Tal como acontece com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot para os dados, ou seja, os menores erros de previsão em média. Aqui é um exemplo de uma série que parece exibir flutuações aleatórias em torno de uma média que varia lentamente. Primeiro, vamos tentar ajustá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de 1 termo: o modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo, elege muito da quotnoisequot no Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se, em vez disso, tentemos uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais lisas: a média móvel simples de 5 meses produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nesta previsão é de 3 ((51) 2), de modo que tende a atrasar os pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não se desviam até vários períodos depois). Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se ampliam à medida que o horizonte de previsão aumenta. Isso obviamente não está correto. Infelizmente, não existe uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para esse modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões do horizonte mais longo. Por exemplo, você poderia configurar uma planilha em que o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc., dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e, em seguida, construir intervalos de confiança para previsões de longo prazo, adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obtemos previsões ainda mais suaves e mais de um efeito de atraso: a idade média é agora de 5 períodos (91) 2). Se tomarmos uma média móvel de 19 termos, a média de idade aumenta para 10: Observe que, de fato, as previsões estão atrasadas em torno de 10 pontos. Qual quantidade de suavização é melhor para esta série. Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3 termos: Modelo C, a média móvel de 5 termos, produz o menor valor de RMSE por uma pequena margem ao longo dos 3 Médias temporais e de 9 termos, e suas outras estatísticas são quase idênticas. Assim, entre os modelos com estatísticas de erro muito semelhantes, podemos escolher se preferimos um pouco mais de capacidade de resposta ou um pouco mais de suavidade nas previsões. (Retornar ao topo da página.) Browns Suavização exponencial simples (média móvel ponderada exponencialmente) O modelo de média móvel simples descrito acima tem a propriedade indesejável de que trata as últimas observações k de forma igualitária e ignora completamente todas as observações precedentes. Intuitivamente, os dados passados devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que o segundo mais recente, e o segundo mais recente deve ter um pouco mais de peso do que o terceiro mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Deixe 945 indicar uma constante de quotesmoothing (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série como estimado a partir de dados até o presente. O valor de L no tempo t é calculado de forma recursiva a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior em uma quantidade fracionada de 945. É o erro cometido em Tempo t. Na terceira versão, a previsão é uma média móvel ponderada exponencialmente (com desconto) com o fator de desconto 1- 945: a versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: ela se encaixa em uma Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior e a célula onde o valor de 945 é armazenado. Note-se que se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, supondo que o primeiro valor suavizado seja igual à média. (Voltar ao topo da página.) A idade média dos dados na previsão de suavização simples-exponencial é 1 945 em relação ao período para o qual a previsão é calculada. (Isso não deve ser óbvio, mas pode ser facilmente demonstrado pela avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a atrasar os pontos de viragem em cerca de 1 945 períodos. Por exemplo, quando 945 0.5 o atraso é de 2 períodos quando 945 0.2 o atraso é de 5 períodos quando 945 0.1 o atraso é de 10 períodos e assim por diante. Para uma média de idade dada (ou seja, a quantidade de lag), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão da média móvel simples (SMA) porque coloca um peso relativamente maior na observação mais recente - isto é. É um pouco mais quotresponsivech para as mudanças ocorridas no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 ambos têm uma idade média de 5 para os dados em suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no Ao mesmo tempo, não possui 8220forget8221 sobre valores com mais de 9 períodos de tempo, como mostrado neste gráfico: Outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, portanto, pode otimizar facilmente Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor ideal de 945 no modelo SES para esta série é 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é 10.2961 3,4 períodos, o que é semelhante ao de uma média móvel simples de 6 termos. As previsões de longo prazo do modelo SES são uma linha direta horizontal. Como no modelo SMA e no modelo de caminhada aleatória sem crescimento. No entanto, note que os intervalos de confiança computados por Statgraphics agora divergem de forma razoável e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um pouco mais previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. Então a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não-sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como um modelo quotARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1- 945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante para a série analisada aqui, o coeficiente MA (1) estimado é 0.7029, o que é quase exatamente um menos 0.2961. É possível adicionar a hipótese de uma tendência linear constante não-zero ao modelo SES. Para fazer isso, basta especificar um modelo ARIMA com uma diferença não-sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão uma tendência que é igual à tendência média observada durante todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial constante a longo prazo a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa de quotinflação adequada (taxa de crescimento) por período pode ser estimada como o coeficiente de inclinação em um modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode ser baseado em outras informações independentes sobre perspectivas de crescimento a longo prazo . (Voltar ao topo da página.) Browns Linear (ou seja, duplo) Suavização exponencial Os modelos SMA e os modelos SES assumem que não há nenhuma tendência de nenhum tipo nos dados (o que normalmente é OK ou pelo menos não muito ruim para 1- Previsões passo a passo quando os dados são relativamente barulhentos) e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. E quanto a tendências de curto prazo Se uma série exibir uma taxa de crescimento variável ou um padrão cíclico que se destaca claramente contra o ruído e, se houver necessidade de prever mais de 1 período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de alisamento exponencial simples pode ser generalizado para obter um modelo de alisamento exponencial linear (LES) que calcula estimativas locais de nível e tendência. O modelo de tendência mais simples do tempo é o modelo de suavização exponencial linear Browns, que usa duas séries suavizadas diferentes centradas em diferentes pontos no tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de alisamento exponencial linear Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em várias formas diferentes, mas equivalentes. A forma quotstandardquot deste modelo geralmente é expressa da seguinte maneira: Seja S denotar a série de suavização individual obtida pela aplicação de suavização exponencial simples para a série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, sob simples Suavização exponencial, esta seria a previsão de Y no período t1.) Então, deixe Squot indicar a série duplamente suavizada obtida aplicando o alisamento exponencial simples (usando o mesmo 945) para a série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dada por: Isto produz e 1 0 (isto é, traga um pouco e deixe a primeira previsão igual a primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isso produz os mesmos valores ajustados que a fórmula com base em S e S, se estes últimos foram iniciados usando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Suavizante Brown8217s modelo LES calcula estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz com um único parâmetro de suavização coloca uma restrição nos padrões de dados que ele pode caber: o nível e a tendência Não podem variar a taxas independentes. O modelo LES de Holt8217s aborda esse problema ao incluir duas constantes de suavização, uma para o nível e outra para a tendência. A qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui, eles são computados de forma recursiva a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam o alisamento exponencial separadamente. Se o nível estimado e a tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão de Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é calculada de forma recursiva interpolando entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1- 945. A alteração no nível estimado, Lt 8209 L t82091. Pode ser interpretado como uma medida ruim da tendência no tempo t. A estimativa atualizada da tendência é então calculada de forma recursiva interpolando entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: a interpretação da constante de simulação de tendência 946 é análoga à da constante de alívio de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda muito lentamente ao longo do tempo, enquanto modelos com 946 maiores assumem que está mudando mais rapidamente. Um modelo com um grande 946 acredita que o futuro distante é muito incerto, porque os erros na estimativa de tendência se tornam bastante importantes ao prever mais de um período à frente. (Voltar ao topo da página.) As constantes de suavização 945 e 946 podem ser estimadas da maneira usual, minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas revelam-se 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume mudanças muito pequenas na tendência de um período para o outro, então, basicamente, esse modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados utilizados na estimativa do nível local da série, a idade média dos dados utilizados na estimativa da tendência local é proporcional a 1 946, embora não exatamente igual a ela. . Neste caso, isso é 10.006 125. Este não é um número muito preciso na medida em que a precisão da estimativa de 946 não é realmente 3 casas decimais, mas é da mesma ordem geral de grandeza que o tamanho da amostra de 100, então Este modelo está com uma média de bastante história na estimativa da tendência. O gráfico de previsão abaixo mostra que o modelo de LES estima uma tendência local um pouco maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pela montagem do modelo SES com ou sem tendência, então este é quase o mesmo modelo. Agora, isso parece previsões razoáveis para um modelo que deveria estimar uma tendência local Se você 8220eyeball8221 este gráfico, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foi estimado pela minimização do erro quadrado das previsões de 1 passo à frente, não de previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está procurando é erros de 1 passo a passo, você não está vendo a imagem maior das tendências em relação a (digamos) 10 ou 20 períodos. Para obter este modelo mais em sintonia com a extrapolação dos dados no olho, podemos ajustar manualmente a constante de alívio da tendência, de modo que ele use uma linha de base mais curta para a estimativa de tendência. Por exemplo, se optar por definir 946 0,1, a idade média dos dados utilizados na estimativa da tendência local é de 10 períodos, o que significa que estamos em média a tendência nos últimos 20 períodos ou mais. Aqui é o que parece o gráfico de previsão se definimos 946 0,1 enquanto mantemos 945 0,3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso extrapolar esta tendência mais de 10 períodos no futuro. E as estatísticas de erro Aqui está uma comparação de modelo para os dois modelos mostrados acima, bem como três modelos SES. O valor ideal de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com um pouco mais ou menos capacidade de resposta, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alpha 0.3048 e beta 0.008 (B) Holts linear exp. Alisamento com alfa 0.3 e beta 0.1 (C) Suavização exponencial simples com alfa 0.5 (D) Suavização exponencial simples com alfa 0.3 (E) Suavização exponencial simples com alfa 0.2 Suas estatísticas são quase idênticas, então realmente podemos usar a escolha com base De erros de previsão de 1 passo à frente na amostra de dados. Temos de voltar atrás em outras considerações. Se acreditamos firmemente que faz sentido basear a estimativa da tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se quisermos ser agnósticos sobre se existe uma tendência local, então um dos modelos SES pode ser mais fácil de explicar e também daria mais previsões do meio da estrada para os próximos 5 ou 10 períodos. (Retornar ao topo da página.) Qual tipo de tendência-extrapolação é melhor: horizontal ou linear Evidências empíricas sugerem que, se os dados já foram ajustados (se necessário) para inflação, então pode ser imprudente extrapolar linear de curto prazo Tendências muito distantes no futuro. As tendências evidentes hoje podem diminuir no futuro devido a causas variadas, como obsolescência do produto, aumento da concorrência e recessões cíclicas ou aumentos em uma indústria. Por este motivo, o alisamento exponencial simples geralmente apresenta melhor fora da amostra do que seria de esperar, apesar da sua extrapolação de tendência horizontal de quotnaivequot. As modificações de tendências amortecidas do modelo de alisamento exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES da modificação amortecida pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. (Beware: nem todo o software calcula os intervalos de confiança para esses modelos corretamente.) A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de alisamento (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos adiante que você está prevendo. Em geral, os intervalos se espalham mais rápido, à medida que 945 se ampliam no modelo SES e se espalham muito mais rápido quando o alisamento linear, em vez do simples, é usado. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Voltar ao topo da página.)
Comments
Post a Comment